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Introduction

• Archetype of a space described by a noncommutative algebra:
phase-space of quantum mechanics, [x, p] = i~ .
Geometric concepts seem to lose their meaning.

• Aim of noncommutative geometry (NCG for short): to translate
(differential) geometric properties into algebraic ones, that can
be studied with algebraic tools and possibly generalized to
noncommutative algebras.

Geometry “is dual to” Algebra

Compact topological spaces X Unital commutative C∗-algebras C(X)

Compact smooth manifolds M Comm. Frechét pre-C∗-algebras C∞(M)

Vector bundles E over X Finite projective C(X)-modules, Γ(E)

Smooth vector bundles E over M Finite projective C∞(M)-modules, Γ∞(E)
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Definition of Podleś spheres

On the interphase between q-groups and NCG.
A(S2

qs) is the ∗-algebra generated by A = A∗, B and B∗ with relations:

AB = q2BA , BB∗+(A+s2)(A−1) = 0 , B∗B+(q2A+s2)(q2A−1) = 0 .

]0, 1] 3 q = deformation parameter, s∈ [0, 1] an additional parameter.

q = 1⇒ 2-sphere with center and radius depending on s.
q 6= 1⇒ the algebra is noncommutative, we call Podleś sphere the
underlying ‘virtual space’.

Some references:

C(S2
qs)→ Podleś, Lett. Math. Phys. 14 (1987) 521.

C∞(S2
qs)→ D’Andrea and Da̧browski, Lett. Math. Phys. 75 (2006) 235.

q-monopoles→ Brzeziński and Majid, Commun. Math. Phys. 213 (2000) 491.
Equivariant reps.→ Schmuedgen and Wagner, Preprint math.QA/0305309.
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Basic q-monopole and chiral representations

Deformation of the Bott projector:

pqs :=
1

1 + s2

(
s2 + A B

B∗ 1− q2A

)
.

Classically (q = 1) it describes a charge 1 magnetic monopole.

We define the Hilbert spaces

H+ := L2(S2
qs)

2pqs , H− := L2(S2
qs)

2(1− pqs) .

(q = 1⇒ H± = L2 Weyl spinors).

The representation of A(S2
qs) on H± can be explicitly computed in a

basis of harmonic spinors |l, m〉±, l ∈ N + 1
2 and m = −l,−l + 1, . . . , l.
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Just to give an idea:

A |l,m〉+ = − qm−1

√
[l + 1

2 ][l + 3
2 ]

[2l + 1][2l + 3]

√
[l + m+ 1][l −m+ 1]

[2l + 2]
×

×
√

(ql+ 1
2 + q−l− 1

2 s2)(ql+ 3
2 s2 + q−l− 3

2 ) |l + 1,m〉+

− qm−1

√
[l − 1

2 ][l + 1
2 ]
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√
[l + m][l −m]

[2l]
×

×
√

(ql+ 1
2 + q−l− 1

2 s2)(ql− 1
2 s2 + q−l+ 1

2 ) |l − 1,m〉+

+

(
(1− s2)

(1− q2)[l − 1
2 ][l + 3

2 ] + 1

1 + q2
− 1

)
×

× [l + m+ 1][l −m]− q−2[l + m][l −m+ 1]

[2l][2l + 2]
|l,m〉+

+
1− s2

1 + q2
|l,m〉+ ,

plus similar formulas for A |l, m〉− and B |l, m〉±.
Here [x] := (qx − q−x)/(q− q−1) is the q-analogue of x ∈ C.



Intro. Def. S2
qs Reps. Spectral triples Analytic properties Dirac for S2

qs Index theory Charge of pqs LIF SUq(2)

A primer on spectral triples

Definition of spectral triple (A,H, D):

• A ⊂ B(H) is a ∗-algebra with 1, H a (separable) Hilbert space;

• D is a selfadjoint operator on (a dense subspace of) H,
(D2 + 1)−1/2 ∈ K(H) and [D, a] ∈ B(H) ∀ a ∈ A;

⇒ dimension axiom : “∃ d ∈ R+ s.t. the eigenvalues of |D|d (in
increasing order, counting multiplicities) diverge linearly”;

⇒ the triple is even if ∃ γ = γ∗, such that γ2 = 1, γD + Dγ = 0 and
aγ = γa ∀ a ∈ A.

Prototype: (C∞(M), L2(M,S), D/ ). d = dimM. ∃ γ iff d is even.

Let d = 2. A real structure is an odd antilinear isometry J on H s.t.:

J2 = −1 , [D, J] = 0 , [a, JbJ−1] = 0 , [[D, a], JbJ−1] = 0 , ∀ a, b ∈ A .
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Analytic properties

(A,H, D) is called regular if

A ∪ [D,A] ⊂
⋂

j∈N
domδ j , δ( . ) = [|D|, . ] .

To each a ∈ B :=
⋃

j∈N δ j(A ∪ [D,A]) we associate a ζ-function:

ζa(z) := TraceH(a|D|−z) ,

holomorphic for z∈ C with Rez sufficiently large.

Definition
A spectral triple has dimension spectrum Σ iff Σ ⊂ C is a
countable set and for all a ∈ B , ζa(z) extends to a meromorphic
function on C with poles in Σ as unique singularities.

Residues of ζ-func. ↔ pairing K•(A)⊗ PHC•(A) → Z (LIF).
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Dirac operators on Podleś spheres

We1 constructed a family of SUq(2)-equivariant spectral triples on S2
qs.

Peculiar example: H := H+ ⊕H− discussed before, with natural
grading, Dirac operator and ‘quasi’ real structure defined by:

D |l, m〉± := (l + 1
2) |l, m〉∓ , J |l, m〉± := (−1)m+1/2 |l,−m〉∓ .

Proposition
(A(S2

qs),H, D) is a 2+-summable regular even spectral triple.

Computations are simplified by neglecting smoothing operators

OP−∞ := {T ∈ B(H) | 〈l, m|T|l′, m′〉 is a rapid decay matrix} .

ζT(z) holomorphic on C ∀ T ∈ OP−∞ ⇒ OP−∞ do not contribute to
singularities of ζ-functions.

1Joint work with L. Dabrowski, G. Landi and E. Wagner.
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‘Approximate’ representation
Let Ĥ be an Hilbert space with orthonormal basis |l,m〉±, l,m∈ Z + 1

2 . Think

to H ⊂ Ĥ as defined by l > 0 and |m| ≤ l. A rep. π : A(S2
qs) → B(Ĥ) is:

π(A) |l,m〉± = − s ql+m−1
√

1− q2(l+m) |l − 1,m〉±
+ (1− s2)q2(l+m) |l,m〉±
− s ql+m

√
1− q2(l+m+1) |l + 1,m〉± ,

π(B) |l,m〉± = . . .

Let π̃ be the projection onto H. ⇒ π̃ much simpler than the original rep.

Lemma a− π̃(a) ∈ OP−∞ for all a ∈ A(S2
qs).

Proposition
The dimension spectrum is Σ = {1, 2} and the top residue is given by:∫

− a|D|−2 := Resz=2ζa(z) =
2
π

∫
S1
σ(a)dθ ∀ a ∈ A(S2

qs) ,

with σ : A(S2
qs) ↪→ C(S1) the homo. defined by: σ(A) = 0 and σ(B) = seiθ.
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Index theory
• D/ elliptic over M is Fredholm. If D/ V := lift to a v.b. V, ∃ an homo.:

Index : K0(M) → Z , [V] 7→ Index(D/ V) .

• To generalize it, def. of Fredholm module [Atiyah]: it is a triple

(A,H,F), A ⊂ B(H), F = F∗, F2 = 1 and [F,A] ⊂ K(H) . E.g.:

(A,H,D) spectral triple ⇒ (A,H, signD) is a Fredholm module.

• Let γ = grading on (A,H,D), aj ∈ A. The class of

chF
n(a0, . . . , an) = 1

2n! Γ( n
2 + 1) Trace(γF[F, a0] . . . [F, an])

in PHCev(A) is indep. of n, ∀ n even and sufficiently large.

• Pairing between φ = (φ0, φ2, . . .) ∈ PHCev(A) and K0(A):

〈φ, [p]〉 = φ0(p) +
∑

k∈N(−1)k (2k)!
k! φ2k(p− 1

2 , p, . . . , p)

p = p∗ = p2 is a projector. The pairing with chF gives:

K0(A) → Z , [p] →
〈
chF, [p]

〉
= Index(pFp)
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Charge of the q-monopole

For Podleś spheres, a Fredholm module is defined by:

F |l,m〉± = |l,m〉∓ .

The pairing: 〈
chF, [p]

〉
≡ chF

0(Tracep) ,

gives an integer valued invariant analogous to the monopole charge.

Proposition
The cohomology class of F is not trivial:

〈
chF, [pqs]

〉
= 1 .

Proved in 3 steps: 1st) prove that the charge is a continuous function of q;

2nd) a continuous function [0, 1) → Z is constant; 3rd) compute it for q = 0.

In general: evaluating
〈
chF, [p]

〉
by computing kernels and cokernels (or

traces) is very difficult. One needs local formulas expressing invariants

through ‘integrals’.
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Local index formulas

Locality makes complicated expressions computable, by neglecting
irrelevant details.

A general theorem (Connes-Moscovici) applied to our case states
that chF is cohomologous to the cocycle ϕ with components:

ϕ0(a0) = Resz=0 z−1Trace(γa0|D|−2z) ,

ϕ2(a0, a1, a2) ∝
∫
− γa0[D, a1][D, a2]|D|−2 .

In principle: ϕ2 is local, ϕ0 is not local.
Actually one can prove: ϕ2 = 0 and ϕ0 = chF

0 .

Proposition
The coboundary ‘ch F − (ϕ0, ϕ2)’ is zero.
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3-spheres and beyond

A different situation on the quantum 3-sphere S3
q := SUq(2), A := real

representative ‘functions’ on SUq(2).

Two different spectral triples: a singular one [Chakraborty and Pal,

K-Theory 28 (2003) 107] (scalar spinors, q 6= 1) and an isospectral one

[Da̧browski et al., Comm. Math. Phys. (2005), online].

If chF
1(a0, a1) := Trace(a0[F, a1]) , then in both cases ∃ a local χ1 : A2 → C

such that [chF
1 ] = [χ1] in PHC•(A).

⇒ chF
1 − χ1 = bψ0 := ψ([ . , . ]) for some cochain ψ0 : A → C .

Conjecture: Fixed a ∈ A , ψ0(a) as a function of q is either 0 or a rational

function + q2∂q2 of the Dedekind η-function.

In the ‘singular’ case, proved by Connes, J. Inst. Math. Jussieu 3 (2004) 17.

In the ‘isospectral’ case, it is yet an open problem.
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