

Local Index Formulas on Quantum Spheres

Francesco D'Andrea

International School for Advanced Studies Via Beirut 2-4, I-34014, Trieste, Italy

> Conference PAFT06 Vietri sul Mare (Sa) 13th April 2006

Introduction

- Archetype of a space described by a noncommutative algebra: phase-space of quantum mechanics, [x, p] = iħ.
 Geometric concepts seem to lose their meaning.
- Aim of noncommutative geometry (NCG for short): to translate (differential) geometric properties into algebraic ones, that can be studied with algebraic tools and possibly generalized to noncommutative algebras.

Geometry	"is dual to"	Algebra	
Compact topological spaces X	Unital commutative C^* -algebras $C(X)$		
Compact smooth manifolds M	Comm. Frechét pre- C^* -algebras $C^{\infty}(M)$		
Vector bundles E over X	Finite	projective $C(X)$ -modules, Γ	(E)
Smooth vector bundles E over M	I Finite pi	rojective $C^{\infty}(M)$ -modules, Γ	$\infty(E)$

Definition of Podleś spheres

On the interphase between *q*-groups and NCG. $\mathcal{A}(S^2_{as})$ is the *-algebra generated by $A = A^*$, *B* and B^* with relations:

 $AB = q^2 B\!A \;, \;\; BB^* + (A + s^2)(A - 1) = 0 \;, \;\; B^*B + (q^2A + s^2)(q^2A - 1) = 0 \;.$

 $]0,1] \ni q =$ deformation parameter, $s \in [0,1]$ an additional parameter.

 $q = 1 \Rightarrow 2$ -sphere with center and radius depending on *s*. $q \neq 1 \Rightarrow$ the algebra is noncommutative, we call Podleś sphere the underlying 'virtual space'.

Some references:

 $C(S_{qs}^2) \rightarrow \text{Podleś, Lett. Math. Phys. 14 (1987) 521.}$ $C^{\infty}(S_{qs}^2) \rightarrow \text{D'Andrea and Dąbrowski, Lett. Math. Phys. 75 (2006) 235.}$ q-monopoles $\rightarrow \text{Brzeziński and Majid, Commun. Math. Phys. 213 (2000) 491.}$ Equivariant reps. $\rightarrow \text{Schmuedgen and Wagner, Preprint math.QA/0305309.}$

Basic *q*-monopole and chiral representations

Deformation of the Bott projector:

$$p_{qs}:=rac{1}{1+s^2}\left(egin{array}{cc} s^2+A & B\ B^* & 1-q^2A \end{array}
ight)$$

Classically (q = 1) it describes a charge 1 magnetic monopole.

We define the Hilbert spaces

$$\mathcal{H}_+ := L^2 (S_{qs}^2)^2 p_{qs} \ , \qquad \mathcal{H}_- := L^2 (S_{qs}^2)^2 (1-p_{qs}) \ .$$

 $(q = 1 \Rightarrow \mathcal{H}_{\pm} = L^2 \text{ Weyl spinors}).$

The representation of $\mathcal{A}(S_{qs}^2)$ on \mathcal{H}_{\pm} can be explicitly computed in a basis of harmonic spinors $|l, m\rangle_{\pm}$, $l \in \mathbb{N} + \frac{1}{2}$ and m = -l, -l + 1, ..., l.

Intro. Def. S_{qs}^2 Reps. Spectral triples Analytic properties Dirac for S_{qs}^2 Index theory Charge of p_{qs} LIF $SU_q(2)$

Just to give an idea:

$$\begin{split} A \left| l, m \right\rangle_{+} &= -q^{m-1} \sqrt{\frac{[l+\frac{1}{2}][l+\frac{3}{2}]}{[2l+1][2l+3]}} \frac{\sqrt{[l+m+1][l-m+1]}}{[2l+2]} \times \\ &\times \sqrt{(q^{l+\frac{1}{2}} + q^{-l-\frac{1}{2}}s^2)(q^{l+\frac{3}{2}}s^2 + q^{-l-\frac{3}{2}})} \left| l+1, m \right\rangle_{+} \\ &- q^{m-1} \sqrt{\frac{[l-\frac{1}{2}][l+\frac{1}{2}]}{[2l-1][2l+1]}} \frac{\sqrt{[l+m][l-m]}}{[2l]} \times \\ &\times \sqrt{(q^{l+\frac{1}{2}} + q^{-l-\frac{1}{2}}s^2)(q^{l-\frac{1}{2}}s^2 + q^{-l+\frac{1}{2}})} \left| l-1, m \right\rangle_{+} \\ &+ \left((1-s^2) \frac{(1-q^2)[l-\frac{1}{2}][l+\frac{3}{2}]+1}{1+q^2} - 1 \right) \times \\ &\times \frac{[l+m+1][l-m] - q^{-2}[l+m][l-m+1]}{[2l][2l+2]} \left| l, m \right\rangle_{+} \\ &+ \frac{1-s^2}{1+q^2} \left| l, m \right\rangle_{+} \quad , \end{split}$$

plus similar formulas for $A |l, m\rangle_{-}$ and $B |l, m\rangle_{\pm}$. Here $[x] := (q^x - q^{-x})/(q - q^{-1})$ is the *q*-analogue of $x \in \mathbb{C}$.

A primer on spectral triples

Definition of **spectral triple** $(\mathcal{A}, \mathcal{H}, D)$:

- $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$ is a *-algebra with 1, \mathcal{H} a (separable) Hilbert space;
- *D* is a selfadjoint operator on (a dense subspace of) *H*, (*D*² + 1)^{-1/2} ∈ *K*(*H*) and [*D*, *a*] ∈ *B*(*H*) ∀ *a* ∈ *A*;
- ⇒ **dimension axiom**: "∃ $d \in \mathbb{R}^+$ s.t. the eigenvalues of $|D|^d$ (in increasing order, counting multiplicities) diverge linearly";
- ⇒ the triple is **even** if $\exists \gamma = \gamma^*$, such that $\gamma^2 = 1$, $\gamma D + D\gamma = 0$ and $a\gamma = \gamma a \forall a \in A$.

Prototype: $(C^{\infty}(M), L^{2}(M, S), \not D)$. $d = \dim M$. $\exists \gamma \text{ iff } d \text{ is even.}$

Let d = 2. A **real structure** is an odd antilinear isometry J on \mathcal{H} s.t.: $J^2 = -1$, [D, J] = 0, $[a, JbJ^{-1}] = 0$, $[[D, a], JbJ^{-1}] = 0$, $\forall a, b \in \mathcal{A}$.

Analytic properties

 $(\mathcal{A}, \mathcal{H}, D)$ is called **regular** if

$$\mathcal{A} \cup [D, \mathcal{A}] \subset igcap_{j \in \mathbb{N}} \operatorname{dom} \delta^j \; , \; \; \; \delta(\, .\,) = [|D|, \, .\,] \; .$$

To each $a \in \mathfrak{B} := \bigcup_{i \in \mathbb{N}} \delta^{j}(\mathcal{A} \cup [D, \mathcal{A}])$ we associate a ζ -function:

 $\zeta_a(z) := \operatorname{Trace}_{\mathcal{H}}(a|D|^{-z})$,

holomorphic for $z \in \mathbb{C}$ with $\operatorname{Re} z$ sufficiently large.

Definition

A spectral triple has **dimension spectrum** Σ iff $\Sigma \subset \mathbb{C}$ is a countable set and for all $a \in \mathfrak{B}$, $\zeta_a(z)$ extends to a meromorphic function on \mathbb{C} with poles in Σ as unique singularities.

Residues of ζ -func. \leftrightarrow pairing $K_{\bullet}(\mathcal{A}) \otimes PHC^{\bullet}(\mathcal{A}) \rightarrow \mathbb{Z}$ (LIF).

Dirac operators on Podles spheres

We¹ constructed a family of $SU_q(2)$ -equivariant spectral triples on S_{qs}^2 .

Peculiar example: $\mathcal{H} := \mathcal{H}_+ \oplus \mathcal{H}_-$ discussed before, with natural grading, Dirac operator and 'quasi' real structure defined by:

$$D |l,m\rangle_{\pm} := (l + \frac{1}{2}) |l,m\rangle_{\mp} , \qquad J |l,m\rangle_{\pm} := (-1)^{m+1/2} |l,-m\rangle_{\mp}$$

Proposition

 $(\mathcal{A}(S^2_{as}), \mathcal{H}, D)$ is a 2⁺-summable regular even spectral triple.

Computations are simplified by neglecting smoothing operators

 $OP^{-\infty} := \{T \in \mathcal{B}(\mathcal{H}) \mid \langle l, m | T | l', m' \rangle \text{ is a rapid decay matrix} \}$.

 $\zeta_T(z)$ holomorphic on $\mathbb{C} \forall T \in OP^{-\infty} \Rightarrow OP^{-\infty}$ do not contribute to singularities of ζ -functions.

¹Joint work with L. Dabrowski, G. Landi and E. Wagner.

'Approximate' representation

Let $\hat{\mathcal{H}}$ be an Hilbert space with orthonormal basis $|l, m\rangle_{\pm}$, $l, m \in \mathbb{Z} + \frac{1}{2}$. Think to $\mathcal{H} \subset \hat{\mathcal{H}}$ as defined by l > 0 and $|m| \leq l$. A rep. $\pi : \mathcal{A}(S_{qs}^2) \to \mathcal{B}(\hat{\mathcal{H}})$ is:

$$\begin{split} \pi(A) \left| l, m \right\rangle_{\pm} &= - s \, q^{l+m-1} \sqrt{1 - q^{2(l+m)}} \, \left| l - 1, m \right\rangle_{\pm} \\ &+ (1 - s^2) q^{2(l+m)} \left| l, m \right\rangle_{\pm} \\ &- s \, q^{l+m} \sqrt{1 - q^{2(l+m+1)}} \, \left| l + 1, m \right\rangle_{\pm} \end{split}$$

$$\pi(B) \left| l, m \right\rangle_{\pm} = \ldots$$

Let $\tilde{\pi}$ be the projection onto \mathcal{H} . $\Rightarrow \tilde{\pi}$ much simpler than the original rep.

Lemma
$$a - \tilde{\pi}(a) \in OP^{-\infty}$$
 for all $a \in \mathcal{A}(S^2_{qs})$.

Proposition

The dimension spectrum is $\Sigma = \{1, 2\}$ and the top residue is given by:

$$\int a|D|^{-2} := \operatorname{Res}_{z=2}\zeta_a(z) = \frac{2}{\pi} \int_{S^1} \sigma(a) \mathrm{d}\theta \qquad \forall \ a \in \mathcal{A}(S^2_{qs}) \ ,$$

with $\sigma : \mathcal{A}(S^2_{qs}) \hookrightarrow C(S^1)$ the homo. defined by: $\sigma(A) = 0$ and $\sigma(B) = se^{i\theta}$.

Intro. Def. S_{ax}^2 Reps. Spectral triples Analytic properties Dirac for S_{ax}^2 Index theory Charge of p_{ax} LIF $SU_q(2)$

• $\not D$ elliptic over *M* is Fredholm. If $\not D_V :=$ lift to a v.b. *V*, \exists an homo.:

Index : $K^0(M) \to \mathbb{Z}$, $[V] \mapsto \operatorname{Index}(\mathcal{D}_V)$.

• To generalize it, def. of **Fredholm module** [Atiyah]: it is a triple $(\mathcal{A}, \mathcal{H}, F), \mathcal{A} \subset \mathcal{B}(\mathcal{H}), F = F^*, F^2 = 1 \text{ and } [F, \mathcal{A}] \subset \mathcal{K}(\mathcal{H}) . E.g.:$

 $(\mathcal{A}, \mathcal{H}, D)$ spectral triple $\Rightarrow (\mathcal{A}, \mathcal{H}, \operatorname{sign} D)$ is a Fredholm module.

• Let
$$\gamma = \text{grading on } (\mathcal{A}, \mathcal{H}, D), a_j \in \mathcal{A}$$
. The class of
 $\operatorname{ch}_n^F(a_0, \dots, a_n) = \frac{1}{2n!} \Gamma(\frac{n}{2} + 1) \operatorname{Trace}(\gamma F[F, a_0] \dots [F, a_n])$

in PHC^{ev}(A) is indep. of n, $\forall n$ even and sufficiently large.

• Pairing between $\phi = (\phi_0, \phi_2, \ldots) \in PHC^{ev}(\mathcal{A})$ and $K_0(\mathcal{A})$:

$$\langle \phi, [p] \rangle = \phi_0(p) + \sum_{k \in \mathbb{N}} (-1)^k \frac{(2k)!}{k!} \phi_{2k}(p - \frac{1}{2}, p, \dots, p)$$

 $p=p^{\ast}=p^{2}$ is a projector. The pairing with ch^{F} gives:

$$K_0(\mathcal{A}) \to \mathbb{Z} \;, \quad [p] \to \left\langle \mathrm{ch}^F, [p] \right\rangle = \mathrm{Index}(pFp)$$

Charge of the *q*-monopole

For Podleś spheres, a Fredholm module is defined by:

$$F\left|l,m\right\rangle_{\pm}=\left|l,m\right\rangle_{\mp}$$

The pairing:

$$\left\langle \mathrm{ch}^{F},[p]\right\rangle \equiv \mathrm{ch}_{0}^{F}(\mathrm{Trace}\,p)$$
,

gives an integer valued invariant analogous to the monopole charge.

Proposition

The cohomology class of *F* is not trivial: $\langle ch^F, [p_{qs}] \rangle = 1$.

Proved in 3 steps: 1st) prove that the charge is a continuous function of q; 2nd) a continuous function $[0, 1) \rightarrow \mathbb{Z}$ is constant; 3rd) compute it for q = 0.

In general: evaluating $\langle ch^F, [p] \rangle$ by computing kernels and cokernels (or traces) is very difficult. One needs local formulas expressing invariants through 'integrals'.

Local index formulas

Locality makes complicated expressions computable, by neglecting irrelevant details.

A general theorem (Connes-Moscovici) applied to our case states that ch^{F} is cohomologous to the cocycle φ with components:

$$\varphi_0(a_0) = \operatorname{Res}_{z=0} z^{-1} \operatorname{Trace}(\gamma a_0 |D|^{-2z}) ,$$

$$\varphi_2(a_0, a_1, a_2) \propto \int \gamma a_0[D, a_1] [D, a_2] |D|^{-2} .$$

In principle: φ_2 is local, φ_0 is not local. Actually one can prove: $\varphi_2 = 0$ and $\varphi_0 = ch_0^F$.

Proposition The coboundary 'ch^{*F*} – (φ_0, φ_2) ' is zero.

3-spheres and beyond

A different situation on the quantum 3-sphere $S_q^3 := SU_q(2)$, $\mathcal{A} :=$ real representative 'functions' on $SU_q(2)$.

Two different spectral triples: a singular one [Chakraborty and Pal, *K*-Theory **28** (2003) 107] (scalar spinors, $q \neq 1$) and an isospectral one [Dąbrowski et al., Comm. Math. Phys. (2005), online].

If $ch_1^F(a_0, a_1) := Trace(a_0[F, a_1])$, then in both cases \exists a local $\chi_1 : \mathcal{A}^2 \to \mathbb{C}$ such that $[ch_1^F] = [\chi_1]$ in $PHC^{\bullet}(\mathcal{A})$.

 $\Rightarrow \operatorname{ch}_1^F - \chi_1 = b\psi_0 := \psi([\,.\,,\,.\,]) \text{ for some cochain } \psi_0 : \mathcal{A} \to \mathbb{C} \,.$

Conjecture: Fixed $a \in A$, $\psi_0(a)$ as a function of q is either 0 or a rational function $+ q^2 \partial_{a^2}$ of the Dedekind η -function.

In the 'singular' case, proved by Connes, J. Inst. Math. Jussieu **3** (2004) 17. In the 'isospectral' case, it is yet an open problem.