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Generalized uncertainty principle(s) (GUPs) in 4(+n) dimensions and their holo-
graphic properties have been investigated in Ref. 4. In this short paper we review
the fact that the expected holographic scaling holds only for one specific kind of
GUP and only in four dimensions: when extra spatial dimensions are admitted,
holography seems to be destroyed. This might suggest that holographic principle
could constrain space-time to be four dimensional.

1. Introduction

During the last years many efforts have been devoted to clarifying the role
played by the existence of extra spatial dimensions in the theory of grav-
ity 1,2. One of the most interesting predictions drawn from the theory is
that there should be measurable deviations from the 1/r2 law of Newtonian
gravity at short (and perhaps also at large) distances. Such new laws of
gravity would imply modifications of those Generalized Uncertainty Prin-
ciples (GUP’s) (see Ref. 5) designed to account for gravitational effects in
the measure of positions and energies.

On the other hand, the holographic principle is claimed to apply to all of
the gravitational systems. The existence of GUP’s satisfying the holography
in four dimensions (one of the main examples is due to Ng and Van Dam 3)
led us to explore the holographic properties of the GUP’s extended to the
brane-world scenarios 4. The results, at least for the examples we consid-
ered, are quite surprising. The expected holographic scaling indeed seems
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to hold only in four dimensions, and only for the Ng and van Dam’s GUP.
When extra spatial dimensions are admitted, the holography is destroyed.
This fact allows two different interpretations: either the holographic princi-
ple is not universal and does not apply when extra dimensions are present;
or, on the contrary, we take seriously the holographic claim in any number
of dimensions, and our results are therefore evidence against the existence
of extra dimensions. The four-dimensional Newton constant is denoted by
GN throughout the paper.

2. Ng and Van Dam GUP in four dimensions

An interesting GUP that satisfies the holographic principle in four dimen-
sions has been proposed by Ng and van Dam 3, based on Wigner inequalities
about distance measurements with clocks and light signals 6.

Suppose we wish to measure a distance l. Our measuring device is
composed of a clock, a photon detector and a photon gun. A mirror is
placed at the distance l which we want to measure and m is the mass of
the system “clock + photon detector + photon gun”. We call “detector”
the whole system and let a be its size. Obviously, we suppose

a > rg ≡ 2 GN m

c2
= RS(m) , (1)

which means that we are not using a black hole as a clock. Be ∆x1 the
uncertainty in the position of the detector, then the uncertainty in the
detector’s velocity is

∆v =
~

2 m ∆x1
. (2)

After the time T = 2 l/c taken by light to travel along the closed path
detector–mirror–detector, the uncertainty in the detector’s position (i.e. the
uncertainty in the actual length of the segment l) has become

∆xtot = ∆x1 + T ∆v = ∆x1 +
~T

2 m ∆x1
. (3)

We can minimize ∆xtot by suitably choosing ∆x1, and we get

(∆xtot)min = (∆x1)min +
~T

2 m (∆x1)min
= 2

(
~T

2 m

)1/2

. (4)

Since T = 2 l/c, we have

(∆xtot)min = 2
(
~ l

m c

)1/2

≡ δlQM . (5)
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This is a purely quantum mechanical result obtained for the first time
by Wigner in 1957 6. From Eq. (5), it seems that we can reduce the
error (∆xtot)min as much as we want by choosing m very large, since
(∆xtot)min → 0 for m →∞. But, obviously, here gravity enters the game.

In fact, Ng and van Dam have also considered a further source of error, a
gravitational error, besides the quantum mechanical one already addressed.
Suppose the clock has spherical symmetry, with a > rg. Then the error due
to curvature can be computed from the Schwarzschild metric surrounding
the clock. The optical path from r0 > rg to a generic point r > r0 is given
by (see, for example, Ref. 7)

c ∆t =
∫ r

r0

dρ

1− rg
ρ

= (r − r0) + rg log
r − rg

r0 − rg
, (6)

and differs from the “true” (spatial) length (r−r0). If we put a = r0, l = r,
the gravitational error on the measure of (l − a) is thus

δlC = rg log
l − rg

a− rg
∼ rg log

l

a
, (7)

where the last estimate holds for l > a À rg.
If we measure a distance l ≥ 2a, then the error due to curvature is

δlC ≥ rg log 2 ' GNm

c2
. (8)

Thus, according to Ng and van Dam the total error is

δltot = δlQM + δlC = 2
(
~ l

m c

)1/2

+
GN m

c2
. (9)

This error can be minimized again by choosing a suitable value for the mass
of the clock, namely mmin = c(~l)1/3/GN and, inserting mmin in Eq. (9),
we then have

(δltot)min = 3
(
`2p l

)1/3
. (10)

The global uncertainty on l contains therefore a term proportional to l1/3.

2.1. Holographic properties

We now see immediately the beauty of the Ng and van Dam GUP: it obeys
the holographic scaling. In fact in a cube of size l the number of degrees of
freedom is given by

N(V ) =
(

l

(δltot)min

)3

=

(
l

(`2p l)1/3

)3

=
l2

`2p
, (11)

as required by the holographic principle.
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3. Models with n extra dimensions

We shall now generalize the procedure outlined in a previous section to
a space-time with 4 + n dimensions, where n is the number of space-like
extra dimensions 4. The link between the gravitational constant GN in
four dimensions and the one in 4 + n, henceforth denoted by G(4+n), of
course depends on the model of space-time with extra dimensions that we
consider. Models recently appeared in the literature mostly belong to two
scenarios: (I) the Arkani-Hamed–Dimopoulos–Dvali (ADD) model 1, where
the extra dimensions are compact and of size L; (II) the Randall–Sundrum
(RS) model 2, where the extra dimensions have an infinite extension but
are warped by a non-vanishing cosmological constant. A feature shared by
(the original formulations of) both scenarios is that only gravity propagates
along the n extra dimensions, while Standard Model fields are confined on
a four-dimensional sub-manifold usually referred to as the brane-world .

In the ADD case the link between GN and G(4+n) can be fixed by
comparing the gravitational action in four dimensions with the one in 4+n

dimensions. The space-time topology in such models is M = M4 ⊗ <n,
where M4 is the usual four-dimensional space-time and <n represents the
extra dimensions of finite size L. From such comparison we obtain

G(4+n) ∼ GN Ln, (12)

where we omit unimportant numerical factors.
The RS models are more complicated. It can be shown 2 that for n = 1

extra dimension we have G(4+n) = σ−1 GN, where σ is the brane ten-
sion with dimensions of length−1 in suitable units. The gravitational force
between two point-like masses m and M on the brane is obtained by per-
turbative calculations, not immediately applicable to a non-perturbative
structure such as a black hole. Therefore we shall consider only the ADD
scenario in this paper (see Ref. 4 for more details).

4. Ng and Van Dam GUP in 4 + n dimensions

Ng and van Dam’s derivation can be generalized to the case with n extra
dimensions. The Wigner relation (5) for the quantum mechanical error
is not modified by the presence of extra dimensions and we just need to
estimate the error δlC due to curvature.

We ought not to consider micro black holes created by the fluctuations
∆E in energy, as in Ref. 5, but we have rather to deal with (more or less)
macroscopic clocks and distances. This implies that we have to distinguish
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four different cases: (1) 0 < L < rg < a < l; (2) 0 < r(4+n) < L < a < l;
(3) 0 < r(4+n) < a < L < l; (4) 0 < r(4+n) < a < l < L; where r(4+n) is
the Schwarzschild radius of the detector in 4 + n dimensions, and of course
rg = r(4). The curvature error will be estimated (as before) by computing
the optical path from a ≡ r0 to l ≡ r. Of course, we will use a metric which
depends on the relative size of L with respect to a and l, that is the usual
four-dimensional Schwarzschild metric in the region r > L, and the 4 + n

dimensional Schwarzschild solution in the region r < L (where the extra
dimensions play an actual role).

In cases (1) and (2) the length of the optical path from a to l can be
obtained using just the four-dimensional Schwarzschild solution and the
result is given by Eq. (10).

In cases (3) and (4) we instead have to use the Schwarzschild solution
in 4 + n dimensions 11,

ds2 = −
(

1− C

rn+1

)
c2dt2 +

(
1− C

rn+1

)−1

dr2 + r2dΩ2
n+2 , (13)

at least for part of the optical path. In the above,

C =
16 π G(4+n) m

(n + 2) An+2 c2
, (14)

and An+2 is the area of the unit (n + 2)-sphere, that is

An+2 =
2 π

n+3
2

Γ
(

n+3
2

) . (15)

Besides, we note that, for n = 0,

C =
2 GN m

c2
= rg , (16)

that is, C coincides in four dimensions with the Schwarzschild radius of the
detector. The 4 + n dimensional Schwarzschild horizon is located where
(1− C/rn+1) = 0, that is at

r = C1/(n+1) ≡ r(4+n). (17)

Since measurements can be performed only on the brane, to the uncer-
tainty ∆x in position we can still associate an energy given by ~ c/(2∆x).
The corresponding Schwarzschild radius is now given by Eq. (17) with
m = ∆E/c2 and the critical length such that ∆x = r(4+n) is the Planck
length in 4 + n dimensions,

∆x ' (
`2p Ln

) 1
n+2 ≡ `(4+n) . (18)
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In case (3) we obtain the length of the optical path from a to l by adding
the optical path from a to L and that from L to l. We must use the solution
in 4+n dimensions for the first part, and the four-dimensional solution for
the second part of the path,

c ∆t =
∫ L

a

(
1 +

C

rn+1 − C

)
dr +

∫ l

L

(
1 +

rg

r − rg

)
dr. (19)

It is not difficult to show that from r(4+n) < L [which holds in cases (3)
and (4)] we can infer

rg < r(4+n) < L . (20)

We suppose an+1 À C = rn+1
(4+n), that is a À r(4+n), so that we are not

doing measures inside a black hole. Then rg < r(4+n) ¿ a < L < l.
In case (4), the optical path from a to l can be obtained by using simply

the Schwarzschild solution in 4 + n dimensions. We get

c ∆t =
∫ l

a

(
1 +

C

rn+1 − C

)
dr = (l − a) + C

∫ l

a

dr

rn+1 − C
. (21)

Also here we suppose, as before, that an+1 À C = rn+1
(4+n), that is a À r(4+n)

(i.e. our clock is not a black hole).
If the distance we are measuring is, at least, of the size of the clock (l ≥

2 a), we can minimize δltot with respect to m in perfect analogy with the
previous calculation and we obtain that the total minimum error (quantum
mechanical + curvature) can be written in both cases in the form

(δltot)min = α(n)

(
`n+2
(4+n) l

an

)1/3

, (22)

where α(n) is an unimportant numerical factor (for detailed calculations
see Ref. 4). Note that, for n = 0, Eq. (22) yields the four-dimensional error
given in Eq. (10).

4.1. Holographic properties

We finally examine the holographic properties of Eq. (22) for the GUP of
Ng and van Dam type in 4 + n dimensions.

Since we are just interested in the dependence of N(V ) on l and the
basic constants, we can write

(δltot)min ∼
(

`n+2
(4+n) l

an

)1/3

. (23)
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We then have that the number of degrees of freedom in the volume of size
l is

N(V ) =
(

l

(δltot)min

)3+n

=
(

l2 an

`2p Ln

)1+ n
3

, (24)

and the holographic counting holds in four-dimensions (n = 0) but is lost
when n > 0. In fact we do not get something as

N(V ) =
(

l

`(4+n)

)2+n

, (25)

as we would expect in 4 + n dimensions. Even if we take the ideal case
a ∼ `(4+n) we get

N(V ) =
(

l

`(4+n)

)2 (1+ n
3 )

, (26)

and the holographic principle does not hold for n > 0.

5. Concluding remarks

In the previous Sections, we have shown that the holographic principle
seems to be satisfied only by uncertainty relations in the version of Ng and
van Dam and for n = 0. That is, only in four dimensions we are able to
formulate uncertainty principles which predict the same number of degrees
of freedom per spatial volume as the holographic counting. This could be
evidence for questioning the existence of extra dimensions.
Moreover, such an argument based on holography could also be used to sup-
port the compactification of string theory down to four dimensions, given
that there seems to be no firm argument which forces the low energy limit of
string theory to be four-dimensional (except for the obvious observation of
our world). Another interesting possibility could be that the Schwarzschild
solution in 4 + n dimensions should be modified, if we want to preserve
both holography and extra dimensions.
We should also say that the cases (3) and (4) of Section 4 do not have
a good probability to be experimentally realized since, if there are extra
spatial dimensions, their size must be shorter than 10−1 mm 8. Therefore,
cases (1) and (2) of Section 4 are more likely going to be tested in future
experiments.
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